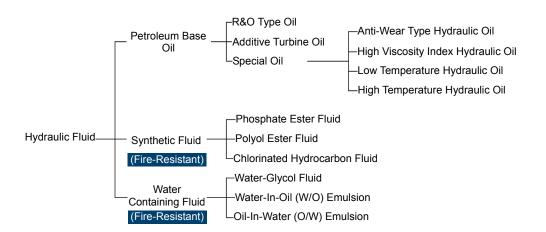
## DATA SHEET

| <ul> <li>Hydraulic Fluid</li></ul>                                                                           | P. 854 |
|--------------------------------------------------------------------------------------------------------------|--------|
| Formulas/Nomograms                                                                                           | P. 859 |
| Part 1: (1) Formulas (1. Pump Output, 2. Shaft Input, 3. Volumetric Efficiency, 4. Overall Efficiency, etc.) |        |
| Part 2: (1) Cylinder Speed, (2) Cylinder Pressure Part 3: (1) Pipe Size/Flow Velocity, (2) Steel Pipes/Tubes |        |
| Part 4: (1) Viscosity vs. Temperature, (2) Viscosity Conversion Chart                                        |        |
| • O-Ring Size                                                                                                | P. 863 |
| Part 1: JIS B 2401 Part 2: AS 568 (Former ARP 568), Aerospace Size Standard for O-Rings                      |        |
| rant 2. The doc (Formal First 600), Florospace Cize Standard for C Filings                                   |        |
| International System of Units (SI)                                                                           | P. 865 |
|                                                                                                              | D 868  |





# Hydraulic Fluid [Part 1] Requirements, Classification, and Properties


#### ■ Requirements

Hydraulic pumps, control valves, and hydraulic cylinders operate at high pressure and high speed; they are also constructed of a variety of materials. Considering these facts as well as fluid temperature and ambient conditions during operation, the following requirements for hydraulic fluids must be met.

- Maintaining proper viscosity as temperature changes
- Flowable at low temperature
- Resistant to high temperature degradation
- Providing high lubricity and wear resistance
- Highly oxidation stable
- Highly shear stable
- Non-corrosive to metal
- Exhibiting good demulsibility/water separation when mixed with water
- Rust-preventive
- Non-compressible
- Providing good defoaming performance
- Fire-resistant

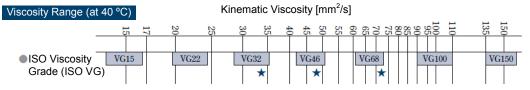
#### Classification

JIS standards for hydraulic fluids do not currently exist, and fluids that meet the above requirements and have a viscosity equivalent to that of petroleum based turbine oils (JIS K 2213) are used. Turbine oils are classified into two types: Type 1 (without additives) and Type 2 (with additives). Type 2 turbine oils contain antirust, antioxidant, and other additives. JIS K 2213 Type 2 turbine oils and special oils with a viscosity grade of ISO VG 32, 46, or 68 are widely used. If there is a risk of fire in the event of fluid leakage or blowout from hydraulic systems, fire-resistant synthetic or water containing fluids are employed. These fire-resistant fluids have different properties from petroleum base oils and must be handled carefully in practical applications. Chlorinated hydrocarbon fluids are rarely used for industrial purposes in Japan, since they become highly toxic and corrosive when decomposed. While other fluids are also available, fluids used for general industrial purposes are largely categorized as follows.



#### Properties (Example)

| Hydraulic<br>Fluid<br>Item    | Petroleum Base Oil (Type 2 Turbine Oil Equivalent to ISO VG 32) | Phosphate<br>Ester Fluid | Polyol Ester<br>Fluid | Water-Glycol<br>Fluid | W/O<br>Emulsion | O/W<br>Emulsion    |
|-------------------------------|-----------------------------------------------------------------|--------------------------|-----------------------|-----------------------|-----------------|--------------------|
| Specific Gravity<br>(15/4 °C) | 0.87                                                            | 1.13                     | 0.93                  | 1.04 - 1.07           | 0.93            | 1.00               |
| Viscosity 40 °C               | 32.0                                                            | 41.8                     | 40.3                  | 38.0                  | 95.1            | 0.7                |
| (mm²/s) 100 °C                | 5.4                                                             | 5.2                      | 8.1                   | 7.7                   | -               | -                  |
| Viscosity Index (VI)          | 100                                                             | 20                       | 160                   | 146                   | 140             | -                  |
| Max. Operating Temp. (°C)     | 70                                                              | 100                      | 100                   | 50                    | 50              | 50                 |
| Min. Operating<br>Temp. (°C)  | -10                                                             | -20                      | -5                    | -30                   | 0               | 0                  |
| Strainer Resistance           | 1.0                                                             | 1.03                     | 1.0                   | 1.2                   | 0.7 - 0.8       | (Same As<br>Water) |




### Hydraulic Fluid [Part 2] Viscosity and Contamination Control

#### Viscosity

The viscosity of industrial lubricants, including hydraulic fluids, is measured by kinematic viscosity v [m²/s], which is obtained by dividing absolute viscosity by density. It is typically expressed in units of square millimeters per second (mm²/s). For viscosity measurement, a capillary viscometer is used to determine kinematic viscosity (mm²/s) as per JIS K 2283 "Crude petroleum and petroleum products - Determination of kinematic viscosity and calculation of viscosity index from kinematic viscosity". Hydraulic fluid viscosity critically affects the performance of hydraulic systems. System operation with a hydraulic fluid viscosity outside the specified range may result in pump suction failure, internal leakage, poor lubrication, valve malfunction, or heat generation in the circuit, shortening the life of equipment or causing a major accident.

According to JIS K 2001 "Industrial liquid lubricants - ISO viscosity classification", 20 viscosity grades are available ranging from ISO VG 2 to 3200. The figure below shows the viscosity range associated with the operation of hydraulic systems. For details, see "Viscosity vs. Temperature" on page 862.



★ For JIS K 2213 Type 2 (with additives), three grades ISO VG 32, 46, and 68 are available.

#### ■ Contamination control

#### Cleanliness

Hydraulic fluid replacement is required in the following three cases.

- (a) Deterioration or degradation of the fluid
- (b) Particulate contamination of the fluid
- (c) Water contamination of the fluid

While Table 3 provides guidelines for (a), the necessity of hydraulic fluid replacement is caused by (b) and (c) in most cases. Particulate contamination of hydraulic fluids may result in pump wear or valve malfunction. In particular, the performance of systems equipped with precision valves (e.g. electro-hydraulic servo valves) and actuators is adversely affected by fine particles of a few micrometers to a few tens of micrometers. Thus, it is necessary to control the level of contamination properly by measuring the size and number of particles in the fluid with a microscope or by measuring the mass of particles per unit volume of the fluid. For the determination of the fluid cleanliness level, filter 100 ml of the fluid through a filtration device and collect particles on a millipore filter (a filter with fine pores of 1/1000 mm). Measure the number and size of the collected particles for classification as shown in Table 1. For highly contaminated fluids, determine the cleanliness level based on the mass of particles collected on the millipore filter, as shown in Table 2. Unused R&O type oils have a cleanliness level of Class 6 to 8 shown in Table 1.

Table 1 NAS Cleanliness Level Based on Particle Counting

Number of particles per 100 ml

| Size             | Class (NAS 1638) |     |     |       |       |       |       |        |        |        |         |         |         |           |
|------------------|------------------|-----|-----|-------|-------|-------|-------|--------|--------|--------|---------|---------|---------|-----------|
| (μm)             | 00               | 0   | 1   | 2     | 3     | 4     | 5     | 6      | 7      | 8      | 9       | 10      | 11      | 12        |
| 5 - 15           | 125              | 250 | 500 | 1,000 | 2,000 | 4,000 | 8,000 | 16,000 | 32,000 | 64,000 | 128,000 | 256,000 | 512,000 | 1,024,000 |
| 15 - 25          | 22               | 44  | 89  | 178   | 356   | 712   | 1,425 | 2,850  | 5,700  | 11,400 | 22,800  | 45,600  | 91,000  | 182,400   |
| 25 - 50          | 4                | 8   | 16  | 32    | 63    | 126   | 253   | 506    | 1,012  | 2,025  | 4,050   | 8,100   | 16,200  | 32,400    |
| 50 - 100         | 1                | 2   | 3   | 6     | 11    | 22    | 45    | 90     | 180    | 360    | 720     | 1,440   | 2,880   | 5,760     |
| More<br>than 100 | 0                | 0   | 1   | 1     | 2     | 4     | 8     | 16     | 32     | 64     | 128     | 256     | 512     | 1,024     |

NAS: National Aerospace Standard ISO: International Organization for Standardization

Table 2 Classification Based on the Gravimetric Method

| NAS  | Class     | 100              | 101       | 102       | 103       | 104       | 105       | 106           | 107            | 108            |
|------|-----------|------------------|-----------|-----------|-----------|-----------|-----------|---------------|----------------|----------------|
| IVAS | mg/100 ml | 0.02             | 0.05      | 0.10      | 0.3       | 0.5       | 0.7       | 1.0           | 2.0            | 4.0            |
|      | Class     | Α                | В         | С         | D         | E         | F         | G             | Н              | 1              |
| MIL  | mg/100 ml | Less<br>than 1.0 | 1.0 - 2.0 | 2.0 - 3.0 | 3.0 - 4.0 | 4.0 - 5.0 | 5.0 - 7.0 | 7.0 -<br>10.0 | 10.0 -<br>15.0 | 15.0 -<br>25.0 |

MIL: Military Specifications and Standards

Data Sheet \_\_\_\_\_\_ 855





#### **Hydraulic Fluid [Part 3]** Service Limit and Contamination Measuring Instrument

#### Service limit

Unused R&O type oils contain 50 to 80 ppm (0.005 to 0.008%) of water, but the water content increases due to entry of atmospheric moisture through the actuator or air breather. Water may cause rust on the inside of hydraulic equipment, poor lubrication, or accelerated degradation of the hydraulic fluid. The water content of the fluid is measured by Karl Fischer titration (based on the quantitative reaction of the reagent with water) with a sensitivity of The particulate/water contamination tolerance of 10 ppm. hydraulic fluids varies depending on the system configuration as outlined in Tables 4 and 5.

Table 4 Recommended Control Level of Fluid Contamination

| System Configuration                                     | Class                    |     |  |  |
|----------------------------------------------------------|--------------------------|-----|--|--|
| System Configuration                                     | JIS B 9933<br>(ISO 4406) | NAS |  |  |
| System with Servo Valve                                  | 18/16/13                 | 7   |  |  |
| System with Piston Pump                                  | 20/18/14                 | 9   |  |  |
| System with Proportional Electro-Hydraulic Control Valve | 20/18/14                 | 9   |  |  |
| System Operating at Pressures Higher than 21 MPa         | 20/18/14                 | 9   |  |  |
| System Operating at Pressures of 14 to 21 MPa            | 21/19/15                 | 10  |  |  |
| General Low Pressure Hydraulic System                    | 21/20/16                 | 11  |  |  |
|                                                          |                          |     |  |  |

★ Comparison of JIS B 9933 (ISO 4406) and NAS for reference

Table 5 Water Contamination Tolerance of R&O Type Oils

Table 3 Criteria for Hydraulic Fluid Replacement (Example)

| Fluid Type                               | Petro | leum B         | Water-Glycol |       |
|------------------------------------------|-------|----------------|--------------|-------|
| Test Item                                | R&O   | An             | ti-Wear      | Fluid |
| Kinematic<br>Viscosity (40 °C)*<br>mm²/s |       | ±10%           | 1            | ±10%  |
| Total Acid                               |       | a <sup>☆</sup> | 0.25         |       |
| Number*<br>mgKOH/g                       | 0.25  | b☆             | ±40%         | -     |

- ★: Variation in kinematic viscosity
- ☆: Additive type (a: Non-zinc based, b: Zinc based)

Table 3 provides guidelines for hydraulic fluid replacement. Detailed specifications vary depending on the manufacturer, and additional control Contacting the fluid requirements may be applied. manufacturer is recommended.

For example, the total acid number (or acid number) is a measure of fluid degradation and affected by the additive type and level. For water-glycol fluids, the pH value is also controlled.

1 ppm = 1/1000000

Limit

| System Conditions                                                                                                | Service L           |
|------------------------------------------------------------------------------------------------------------------|---------------------|
| The hydraulic fluid is cloudy with water.                                                                        | To be immed replace |
| The system has a circuit for circulating the hydraulic fluid back to the oil tank and operates without long-term | E00 pp              |

ediately ed 500 ppm shutdown. The piping length of the system is long, and the hydraulic fluid does not fully circulate in the circuit. 300 ppm The system remains out of service for a long period (safety system), has a circuit in which the hydraulic fluid 200 ppm hardly moves, or is designed to provide precision control.

Portable Fluid Contamination Measuring Instrument

#### YUKEN CONTAMI-KIT

Model Number: YC-100-22

YUKEN'S CONTAMI-KIT is a fluid contamination measuring instrument that samples hydraulic fluids and microscopically measures the distribution of particles collected on a membrane filter as per JIS B 9930 or SAE ARP 598 A.

- Specifications
- 1) Power supply: Both AC and DC power supplies supported (100 V AC/6 V DC)
- 2) Microscope magnification: 100 times (40 times: Option for KYC-100-L-20)
- 3) Applicable fluids: Petroleum base oil, polyol ester fluid, and water-glycol fluid (optional)
- 4) Case dimensions: L 600 × W 240 × H 360 mm
- 5) Total mass: Approximately 9 kg
- Features of CONTAMI-KIT
- 1) Usable everywhere

Portable and supports both AC and DC power supplies (switchable).

2) User-friendly

Requires no skills and involves only comparing the results with the standard contamination plate.

- 3) Time-efficient
- Takes only about 10 minutes for each measurement.
- 4) Supporting photo taking

Allows photo taking with a single-lens reflex camera for recording.





Contamination Plate





# Hydraulic Fluid [Part 4] YUKEN's Hydraulic Equipment and Fluid Types (1)

Hydraulic equipment is affected differently depending on the fluid type; special care should be taken when selecting the equipment. The table below shows YUKEN's hydraulic equipment available for each fluid type. For details, see the relevant pages.

| Hydraulic Fluid Petroleum Base Oil (Equipment (Equipment 5) S K 2213 Type 2) |                                                    | Phosphate Ester Fluid                          | Polyol Ester Fluid                                                                        |                                           |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
|                                                                              | A Series Variable splacement Piston Pump           | Standard                                       | Custom: Z6<br>Seal: Fluororubber                                                          | Consult us.                               |  |  |
| F                                                                            | ixed Displacement<br>Vane Pump                     | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
| Pre                                                                          | essure Control Valve                               | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
| F                                                                            | low Control Valve                                  | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
| Dire                                                                         | ctional Control Valve                              | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
|                                                                              | Modular Valve                                      | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
|                                                                              | Logic Valve                                        | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
| ا                                                                            | Proportional<br>Electro-Hydraulic<br>Control valve | Standard                                       | "F-" + Standard Model*¹<br>Seal: Fluororubber                                             | Standard* <sup>2</sup>                    |  |  |
|                                                                              | Servo Valve                                        | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
| der                                                                          | CJT Series Standard                                |                                                | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
| Cylinder                                                                     | CBY14 Series                                       | Standard<br>Packing Material: 6 (HNBR)         | Semi-Standard<br>Packing Material: 3<br>(Fluororubber)                                    | Standard<br>Packing Material: 6 (HNBR)    |  |  |
|                                                                              | Accumulator                                        | Standard/<br>Commercially Available<br>Product | Butyl Rubber Diaphragm Type/<br>Piston Type (Except for<br>Aluminum) Permitted            | Butyl Rubber Diaphragm Type<br>Prohibited |  |  |
|                                                                              | Needle Valve                                       | Standard                                       | "F-" + Standard Model<br>Seal: Fluororubber                                               | Standard                                  |  |  |
|                                                                              | Tank Filter                                        | Aluminum                                       | Aluminum                                                                                  | Aluminum                                  |  |  |
|                                                                              | Oil Level Gauge                                    | Direct Reading Type                            | Remote Reading Type                                                                       | Direct Reading Type                       |  |  |
|                                                                              | Rubber Tube                                        | Nitrile Rubber                                 | Butyl Rubber                                                                              | Nitrile Rubber                            |  |  |
|                                                                              | Inside Coating of<br>Oil Tank                      | Epoxy/Phenolic Coating<br>Permitted            | Inside Coating Prohibited<br>(Chemical Conversion Coating<br>Permitted)                   | Phenolic Coating Prohibited               |  |  |
|                                                                              | Effect on Metals                                   | None                                           | Aluminum Sliding Parts<br>Prohibited                                                      | None                                      |  |  |
|                                                                              | Nitrile Rubber                                     | Permitted                                      | Prohibited                                                                                | Permitted                                 |  |  |
|                                                                              | Fluororubber                                       | Permitted                                      | Permitted                                                                                 | Permitted                                 |  |  |
|                                                                              | Silicone Rubber                                    | Prohibited                                     | Permitted                                                                                 | Permitted                                 |  |  |
|                                                                              | Butyl Rubber                                       | Prohibited                                     | Permitted                                                                                 | Prohibited                                |  |  |
| Seal                                                                         | Ethylene Propylene<br>Rubber                       | Prohibited                                     | Permitted                                                                                 | Permitted                                 |  |  |
|                                                                              | Urethane Rubber                                    | Permitted                                      | Prohibited                                                                                | Permitted                                 |  |  |
|                                                                              | Fluororesin Permitted                              |                                                | Permitted                                                                                 | Permitted                                 |  |  |
|                                                                              | Chloroprene                                        | Permitted                                      | Prohibited                                                                                | Permitted                                 |  |  |
|                                                                              | Leather                                            | Permitted                                      | Permitted                                                                                 | Permitted                                 |  |  |
|                                                                              | Other                                              | -                                              | Protect electrical wiring by applying oil resistant coating or by running it in conduits. | -                                         |  |  |

<sup>★1.</sup> Contact us for details of EH Series High Response Directional and Flow Control Valves (EHDFG-04/06).

Data Sheet

**Hydraulic Fluid** 

<sup>★2.</sup> Contact us for details of EH Series Directional and Flow Control Valves (EHDFG-03) and EH Series High Response Directional and Flow Control Valves (EHDFG-04/06).

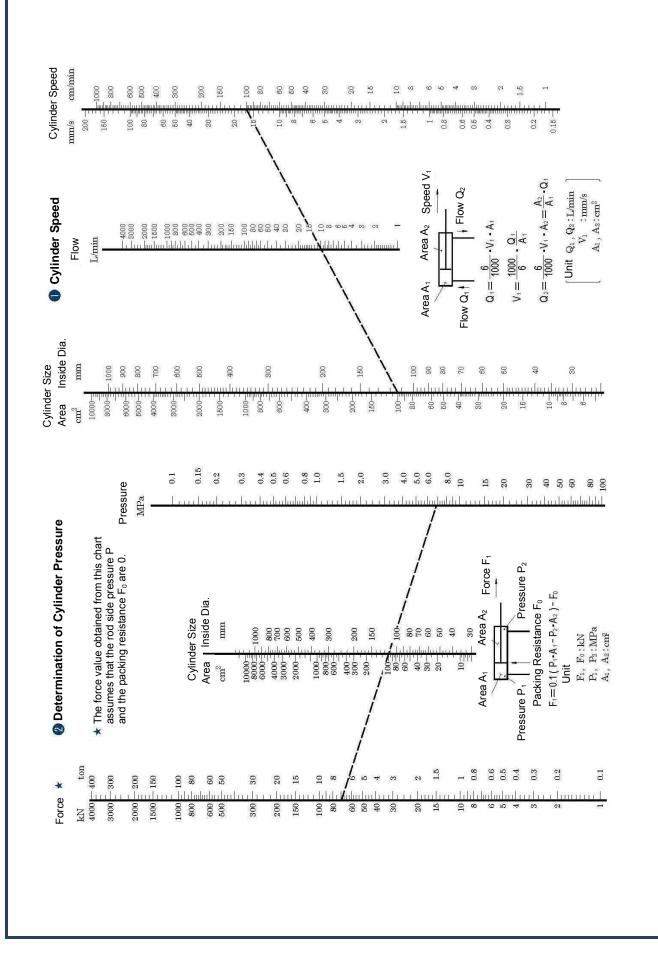


#### Hydraulic Fluid [Part 5] YUKEN's Hydraulic Equipment and Fluid Types (2)

| Equ      | Hydraulic Fluid ipment                             | Water-Glycol Fluid                                                      | W/O Emulsion                                                               | O/W Emulsion                                |  |
|----------|----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|--|
|          | A Series Variable<br>splacement Piston<br>Pump     | Custom: Z30                                                             | Custom: Z30                                                                | Consult us.                                 |  |
| Fi:      | xed Displacement<br>Vane Pump                      | "M-" + Standard Model<br>PV2R: Standard                                 | Custom: Z35<br>("M-" + Standard Model in<br>some cases)<br>PV2R: Standard  | Consult us.                                 |  |
| Pre      | ssure Control Valve                                | Standard                                                                | Consult us.                                                                | Consult us.                                 |  |
| F        | low Control Valve                                  | Standard                                                                | Consult us.                                                                | Consult us.                                 |  |
| D        | irectional Control<br>Valve                        | Standard                                                                | Standard                                                                   | Consult us.                                 |  |
|          | Modular Valve                                      | Standard                                                                | Consult us.                                                                | Consult us.                                 |  |
|          | Logic Valve                                        | Standard                                                                | Consult us.                                                                | Consult us.                                 |  |
| E        | Proportional<br>Electro-Hydraulic<br>Control Valve | Standard* <sup>1</sup>                                                  | Consult us.                                                                | Consult us.                                 |  |
|          | Servo Valve                                        | Standard* <sup>2</sup>                                                  | Consult us.                                                                | Consult us.                                 |  |
| der      | CJT Series Standard Seal: Nitrile Ru               |                                                                         | Standard<br>Seal: Nitrile Rubber                                           | Custom<br>Seal: Nitrile Rubber              |  |
| Cylinder | CBY14 Series                                       | Standard Standard Packing Material: 6 (HNBR) Packing Material: 6 (HNBR) |                                                                            | Standard<br>Packing Material: 6 (HNBR)      |  |
|          | Accumulator                                        | Standard/<br>Commercially Available Product                             | Standard/<br>Commercially Available Product                                | Standard/<br>Commercially Available Product |  |
|          | Needle Valve                                       | Standard                                                                | Standard                                                                   | Standard                                    |  |
|          | Tank Filter                                        | Stainless Steel<br>(Aluminum, Cadmium, or<br>Galvanizing Prohibited)    | Aluminum/Stainless Steel<br>(Cadmium or Galvanizing<br>Prohibited)         | Stainless Steel<br>(Aluminum Prohibited)    |  |
|          | Oil Level Gauge                                    | Direct Reading Type                                                     | Direct Reading Type                                                        | Direct Reading Type                         |  |
|          | Rubber Tube                                        | Nitrile Rubber                                                          | Nitrile Rubber                                                             | Nitrile Rubber                              |  |
| ı        | nside Coating of<br>Oil Tank                       | Inside Coating Prohibited<br>(Chemical Conversion Coating<br>Permitted) | Inside Coating Prohibited<br>(Chemical Conversion Coating<br>Permitted)    | Epoxy Coating Permitted                     |  |
|          | Effect on Metals                                   | Aluminum, Cadmium, or Zinc<br>Prohibited                                | Copper, Cadmium, or Zinc<br>Prohibited                                     | None                                        |  |
| -        | Nitrile Rubber                                     | Permitted                                                               | Permitted                                                                  | Permitted                                   |  |
|          | Fluororubber                                       | Permitted                                                               | Permitted<br>Permitted                                                     | Permitted<br>Prohibited                     |  |
|          | Silicone Rubber                                    | Prohibited<br>Permitted                                                 | Prohibited<br>Prohibited                                                   | Prohibited<br>Prohibited                    |  |
| Seal     | Butyl Rubber Ethylene Propylene Rubber             | Permitted Permitted                                                     | Prohibited Prohibited                                                      | Prohibited Prohibited                       |  |
|          | Urethane Rubber Prohibited                         |                                                                         | Prohibited                                                                 | Prohibited                                  |  |
|          | Fluororesin Permitted                              |                                                                         | Permitted                                                                  | Permitted                                   |  |
|          | Chloroprene                                        | Permitted                                                               | Permitted                                                                  | Permitted                                   |  |
|          | Leather                                            | Prohibited                                                              | Prohibited                                                                 | Prohibited                                  |  |
|          | Other                                              | -                                                                       | Be sure to have the oil tank bottom tilted and equipped with a drain cock. | -                                           |  |

<sup>★1.</sup> Contact us for details of EH Series High Response Directional and Flow Control Valves (EHDFG-04/06).

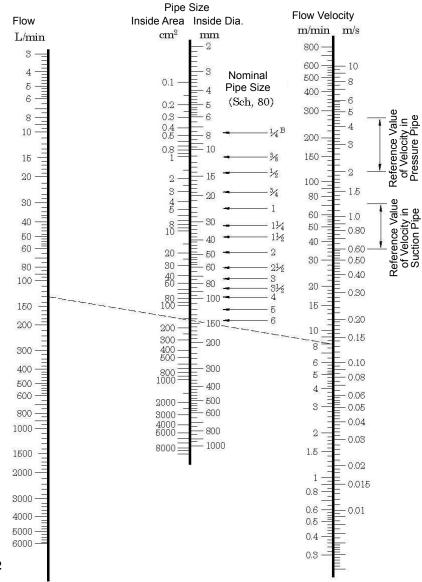
<sup>★2.</sup> Contact us for details of the following products.


<sup>-</sup> On-Board Electronics Type Linear Servo Valves without DR Port (Wet Type Pilot Valve: LSVHG-\*EH-\*-W)



### Formulas/Nomograms [Part 1] (1) Formulas

|                |                                                                                                                              | SI Unit                                                                                                                                                                                                                                                                                                                           | Engineering Unit (Reference)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                | Hydraulic Power     (Pump Output)                                                                                            | $L_0 \! = \! \frac{P \! \cdot \! Q}{60}  \begin{bmatrix} L_0 \! : \text{Hydraulic Power} & \text{kW} \\ P \! : \text{Pressure} & \text{MPa} \\ Q \! : \text{Flow} & \text{L/min} \\ * \ 1 \ \text{kW} = 1 \ \text{kN*m/s} \\ = 60 \ \text{kN*m/min} \end{bmatrix}$                                                                | $L_0 = \frac{P \cdot Q}{612}  \begin{bmatrix} L_0 : \ \text{Hydraulic Power kW} \\ P : \ \text{Pressure kgf/cm}^2 \\ Q : \ \text{Flow L/min} \\ * \ 1 \ \text{kW} = 102 \ \text{kgf*m/s} \\ = 6120 \ \text{kgf*m/min} \end{bmatrix}$                                                                                                                                                                                                                          |  |  |
| dwr            | Shaft Input                                                                                                                  | $L_{i} = \frac{2\pi TN}{60000} \begin{bmatrix} L_{i} : Shaft Input & kW \\ T : Shaft Torque & N*m \\ N : Shaft Speed & r/min \end{bmatrix}$                                                                                                                                                                                       | $L_{i} = \frac{2\pi TN}{6120} \begin{bmatrix} L_{i}: Shaft Input & kW \\ T: Shaft Torque & kgf \cdot m \\ N: Shaft Speed & rpm \end{bmatrix}$                                                                                                                                                                                                                                                                                                                 |  |  |
| Hydraulic Pump | Volumetric Efficiency                                                                                                        | $\eta_{V} = \frac{Q_{P}}{Q_{O}} \times 100$ $Q_{P}$ : Flow at P                                                                                                                                                                                                                                                                   | ressure P L/min lo Load L/min ump's Total Internal Leakage                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                | Overall Efficiency                                                                                                           | $ \begin{split} \eta = & \frac{L_0}{L_i} \times 100 \\ = & \frac{P \cdot Q}{60  L_i} \times 100 \end{split} \begin{tabular}{l} $\eta : Overall Efficiency \% \\ L_0: Hydraulic Power kW \\ L_1: Shaft Input kW \\ P: Discharge Pressure MPa \\ Q: Flow L/min \\ \end{split} $                                                     | $ \begin{split} \eta = & \frac{L_0}{L_1} \times 100 \\ = & \frac{P \cdot Q}{612 L_1} \times 100 \\ \end{split} $ $ \begin{bmatrix} \eta : \text{Overall} \\ \text{Efficiency} & \% \\ L_0 : \text{Hydraulic Power kW} \\ L_1 : \text{Shaft Input kW} \\ P : \text{Discharge Pressure kgfform}^2 \end{bmatrix} $                                                                                                                                               |  |  |
| •              | Hydraulic Motor Output                                                                                                       | $L = \frac{2\pi T \cdot N}{60\ 000}  \begin{bmatrix} L: Output & kW \\ T: Torque & Nm \\ N: Speed & r/min \end{bmatrix}$                                                                                                                                                                                                          | $L = \frac{2\pi T \cdot N}{6120} \begin{bmatrix} \text{L: Output kW} \\ \text{T: Torque kgf \cdot m} \\ \text{N: Speed rpm} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                    |  |  |
| •              | Cylinder Output                                                                                                              | L= F·V 60                                                                                                                                                                                                                                                                                                                         | L=F·V 6120                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Р              | Valve Power Loss  Flow Q  Pressure P₁  Valve  Pressure P₂  Pressure Loss: △P=P₁-P₂  r Loss between Valve Inlet and Outlet: L | $L = \frac{\triangle P \cdot Q}{60} \qquad \begin{bmatrix} L : kW \\ \triangle P : MPa \\ Q : L/min \end{bmatrix}$                                                                                                                                                                                                                | $L = \frac{\triangle P \cdot Q}{612} \qquad \begin{bmatrix} L : kW \\ \triangle P : kgf/cm^2 \\ Q : L/min \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                      |  |  |
|                | Viscosity (Absolute) and<br>Kinematic Viscosity                                                                              | $\mu = \rho \cdot \nu_1 = \rho \cdot \nu_2 \times 10^{-6}$ $\begin{bmatrix} \mu : \text{Viscosity (Absolute)} & \text{Pa·s } (= \text{N·s/m}^2) \\ \rho : \text{Density } & \text{kg/m}^3 \\ \nu_1 : \text{Kinematic Viscosity} & \text{m}^2/\text{s} \\ \nu_2 : \text{Kinematic Viscosity} & \text{mm}^2/\text{s} \end{bmatrix}$ | $\mu = \rho \cdot \nu_1 = \frac{\gamma}{g} \cdot \nu_1 = \frac{\gamma \cdot \nu_2}{100g}$ $\mu : \text{Viscosity (Absolute)}  \text{kgf·s/cm}^2$ $\rho : \text{Density kgf·s}^2/\text{cm}^4$ $\nu_1 : \text{Kinematic Viscosity cm}^2/\text{s}$ $\nu_2 : \text{Kinematic Viscosity cSt}$ $\gamma : \text{Specific Gravity kgf/cm}^3$ $g : \text{Gravitational Acceleration 980 cm/s}^2$ $* 1 \text{ cSt} = 0.01 \text{ cm}^2/\text{s}$                        |  |  |
| Diameter       | Reynolds Number  d Velocity V Flow Q  R: Reynolds Number  v: Kinematic Viscosity                                             | $R = \frac{V \cdot d}{\nu_1} = \frac{4000Q}{60\pi d \cdot \nu_1} = \frac{2120Q}{d \cdot \nu_2}$                                                                                                                                                                                                                                   | $ \begin{array}{c} R: \begin{array}{c} \text{Dimensionless} \\ V: \begin{array}{c} \text{Quantity} \\ V: \begin{array}{c} \text{cm/s} \end{array} \end{array} \\ \text{d}: \begin{array}{c} \text{cm} \\ \text{v}_1: \begin{array}{c} \text{cm}^2/\text{s} \end{array} \\ \text{v}_2: \begin{array}{c} \text{mm}^2/\text{s} \left  \text{cSt} \right  \end{array} \end{array} \right) \\ \text{R} < 2300: Laminar Flow} \\ \text{R} > 2300: Turbulent Flow} $ |  |  |
| •              | Orifice Flow                                                                                                                 | $Q = C \cdot A \sqrt{\frac{2 / P}{\rho} \times 10^6} \times 6$                                                                                                                                                                                                                                                                    | $Q = C \cdot A \sqrt{\frac{2g}{\gamma} \cdot \angle P} \times \frac{60}{1000} = 2.66 C \cdot A \sqrt{\frac{\angle P}{\gamma}}$                                                                                                                                                                                                                                                                                                                                |  |  |
| A: Open        | $P_2$ $Q$ ing Area $\Delta P = P_1 - P_2$ $C = Pischarge Coefficient$                                                        | $ \left\{ \begin{array}{ll} \text{Q: L/min} & \rho : \text{kg/m}^3 \\ \text{C: Dimensionless} & \\ \text{Discharge Coefficient} \\ \Delta \text{P: MPa} & \text{A: cm}^2 \end{array} \right\} $                                                                                                                                   | Q: L/min g: 980 cm/s² C: Dimensionless Discharge Coefficient γ: kgf/cm³ A: cm² ΔP: kgf/cm²                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                | C = Discharge Coefficient<br>$\gamma = Specific Gravity$<br>$\rho = Density$                                                 | Note) The value of discharge coefficient do<br>the Reynolds number; it generally rar                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |








#### Formulas/Nomograms [Part 3] (1) Pipe Size/Flow Velocity, (2) Steel Pipes/Tubes





Steel Tubes/Pipes SGP. STS370. STPS2 Carbon Steel Pipes

| Pipe T | ype ->   |          | SGP<br>(JIS G 3452) | STS370<br>(JIS G 3455) |      |       |        |       |        |       |      |           |      |       |      |
|--------|----------|----------|---------------------|------------------------|------|-------|--------|-------|--------|-------|------|-----------|------|-------|------|
| Nomin  | al Pres. | . MPa -> | 2                   | 4                      | 4 6  |       |        |       | )      | 16    | 3    | 25        |      | 35    |      |
| Safety | Factor   | ->       |                     | 8 or more              |      |       | 6 or n | nore  | 5 or r | nore  |      | 4 or more |      |       |      |
| Nomin  | al Dia.  | Outside  | Thickness           | Thick                  | Sch. | Thick | Sch.   | Thick | Sch.   | Thick | Sch. | Thick     | Sch. | Thick | Sch. |
| (A)    | (B)      | mm       | mm                  | mm                     | No.  | mm    | No.    | mm    | No.    | mm    | No.  | mm        | No.  | mm    | No.  |
| - 8    | 1/4      | 13.8     |                     |                        |      |       |        |       |        |       |      |           |      | 3.0   | 80   |
| 10     | 3/8      | 17.3     |                     |                        |      |       |        |       |        |       |      |           |      | 3.2   | 80   |
| 15     | 1/2      | 21.7     |                     |                        |      | 2.8   | 40     |       |        |       |      | 3.7       | 80   | 4.7   | 160  |
| 20     | 3/4      | 27.2     |                     |                        |      | 2.9   | 40     |       |        |       |      | 3.9       | 80   | 5.5   | 160  |
| 25     | 1        | 34.0     |                     |                        |      | 3.4   | 40     | 4.5   | 80     |       |      |           |      | 6.4   | 160  |
| 32     | 1 1/4    | 42.7     |                     |                        |      | 3.6   | 40     | 4.9   | 80     |       |      | 6.4       | 160  | 8.0   | *    |
| 40     | 1 1/2    | 48.6     |                     |                        |      | 3.7   | 40     | 5.1   | 80     |       |      | 7.1       | 160  | 9.0   | *    |
| 50     | 2        | 60.5     |                     | 3.9                    | 40   |       |        | 5.5   | 80     |       |      | 8.7       | 160  | 11.2  | *    |
| 65     | 2 1/2    | 76.3     | 4.2                 | 5.2                    | 40   |       |        | 7.0   | 80     | 9.5   | 160  |           |      | 14.2  | *    |
| 80     | 3        | 89.1     | 4.2                 | 5.2                    | 40   |       |        | 7.6   | 80     | 11.1  | 160  |           |      | 16.5  | *    |
| 90     | 3 1/2    | 101.6    | 4.2                 | 5.7                    | 40   | 8.1   | 80     |       |        | 12.7  | 160  |           |      | 20.0  | *    |
| 100    | 4        | 114.3    | 4.5                 | 6.0                    | 40   | 8.6   | 80     |       |        | 13.5  | 160  |           |      | 20.0  | *    |
| 125    | 5        | 139.8    | 4.5                 | 9.5                    | 80   |       |        | 15.9  | 160    |       |      |           |      |       |      |
| 150    | 6        | 165.2    | 5.0                 | 11.0                   | 80   |       |        | 18.2  | 160    |       |      |           |      |       |      |

#### Precision Carbon Steel Tubes for Compression Type Tube Fittings ·Thickness (mm)

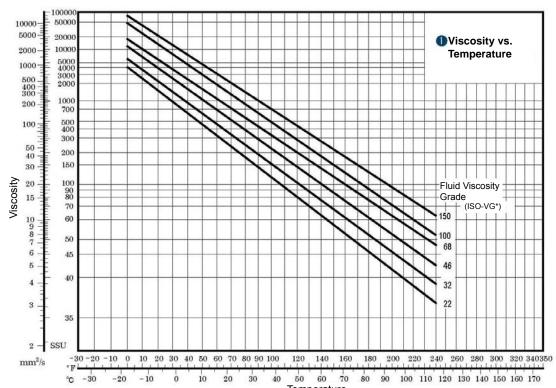
| Nominal Pres. MPa        | 10   | 16   | 25        | 35  |  |
|--------------------------|------|------|-----------|-----|--|
| Outside mm Safety Factor | 6 or | more | 4 or more |     |  |
| 6                        |      |      |           | 1.5 |  |
| 10                       |      |      | 1.5       | 2.0 |  |
| 12                       |      |      | 2.0       | 2.5 |  |
| 16                       | 2.0  |      | 3.0       |     |  |
| 20                       | 2.0  | 2.5  | 3.0       |     |  |
| 25                       | 2.5  |      | 4.0       |     |  |

#### Note)

- 1. STPS2 defined in JIS B 2351-1 Annex 2.
- For selection considerations, refer to Note 1 in the "Carbon Steel Pipes" section.
- 3. Designation

- 1. The selection of steel pipes based on the operating pressure may be difficult, since the pressure fluctuation, pipe vibration, pipe connection type, and other factors must be considered. Refer to the nominal pressure values
- and their corresponding safety factors in the left table for pipe selection.

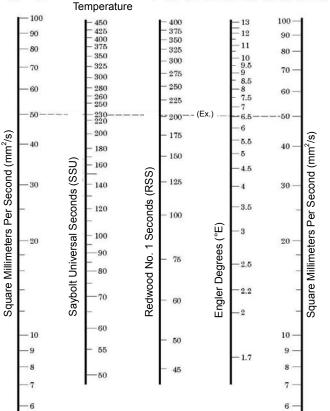
  2. "Sch. No." is an abbreviation for schedule number. Note that "\* indicates special thick wall steel pipes with no schedule number.
  - <Reference>
    JIS G 3452, 3454 to 64 Description Schedule number = 10 × P/S
- P: Operating pressure MPa S: Allowable stress MPa 3. Designation (-B Series of Yuken) (Example 1) SGP pipe: SGP-2 1/2B
- (Example 2) STS370 with Sch. No. STS370-3/4B × Sch. 80 (Example 3) STS370 special thick wall steel pipe: STS370-1 1/4B × 8.0 t


(Example) STPS2-12 × 2.5

Data Sheet -861



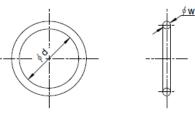
#### Formulas/Nomograms [Part 4]


- (1) Viscosity vs. Temperature,
- (2) Viscosity Conversion Chart



#### **2** Viscosity Conversion Chart

Use the following equations when the viscosity is 100 mm<sup>2</sup>/s or more.


$$SSU \times 0.220 = mm^2/s$$
  
 $RSS \times 0.2435 = mm^2/s$   
 $^{\circ}E \times 7.6 = mm^2/s$ 





### O-Ring Size [Part 1] JIS B 2401

#### **Data Sheet**



| 7 |   | ∮W |
|---|---|----|
|   | ļ | _  |
| - |   | _  |

| -P* |
|-----|

|                                           |                                      | ı   |
|-------------------------------------------|--------------------------------------|-----|
| JIS I                                     | 3 2401-1 <mark>A</mark> -            | РЖ  |
| Designation                               | Actual Si                            | · / |
| P 3                                       | d<br>2.8                             | W   |
| P 4<br>P 5<br>P 6<br>P 7                  | 3.8<br>4.8<br>5.8<br>6.8             | 1.9 |
| P 8<br>P 9<br>P 10                        | 7.8<br>8.8<br>9.8                    | 1.9 |
| P 10A<br>P 11                             | 9.8<br>10.8                          | 2.4 |
| P 11.2<br>P 12<br>P 12.5<br>P 14<br>P 15  | 11.0<br>11.8<br>12.3<br>13.8<br>14.8 | 2.4 |
| P 16<br>P 18<br>P 20<br>P 21<br>P 22      | 15.8<br>17.8<br>19.8<br>20.8<br>21.8 | 2.4 |
| P 22A<br>P 22.4<br>P 24<br>P 25<br>P 25.5 | 21.7<br>22.1<br>23.7<br>24.7<br>25.2 | 3.5 |
| P 26<br>P 28<br>P 29<br>P 29.5<br>P 30    | 25.7<br>27.7<br>28.7<br>29.2<br>29.7 | 3.5 |
| P 31<br>P 31.5<br>P 32<br>P 34<br>P 35    | 30.7<br>31.2<br>31.7<br>33.7<br>34.7 | 3.5 |
| P 35.5<br>P 36<br>P 38<br>P 39<br>P 40    | 35.2<br>35.7<br>37.7<br>38.7<br>39.7 | 3.5 |
| P 41<br>P 42<br>P 44<br>P 45<br>P 46      | 40.7<br>41.7<br>43.7<br>44.7<br>45.7 | 3.5 |
| P 48<br>P 49<br>P 50                      | 47.7<br>48.7<br>49.7                 | 3.5 |
| P 48A<br>P 50A                            | 47.6<br>49.6                         | 5.7 |
| P 52<br>P 53<br>P 55<br>P 56<br>P 58      | 51.6<br>52.6<br>54.6<br>55.6<br>57.6 | 5.7 |
| P 60<br>P 62<br>P 63<br>P 65<br>P 67      | 59.6<br>61.6<br>62.6<br>64.6<br>66.6 | 5.7 |
| P 70<br>P 71<br>P 75<br>P 80<br>P 85      | 69.6<br>70.6<br>74.6<br>79.6<br>84.6 | 5.7 |

| <ul><li>O-Ring Types According to JIS and YES (Yuken Engineering Standards)</li></ul> |       |         |  |  |
|---------------------------------------------------------------------------------------|-------|---------|--|--|
| J I S                                                                                 | Y E S | Remarks |  |  |
| Dw                                                                                    | DW    |         |  |  |

| J I S                     | Y E S      | Remarks                                  |                     |
|---------------------------|------------|------------------------------------------|---------------------|
| JIS B 2401-1A- P**        | SO-NA-P**  | For Use with<br>Mineral Oils             | Spring Hardness: 70 |
| JIS B 2401-1B- P**<br>G** | SO-NB-P**  | Material:<br>Nitrile Rubber              | Spring Hardness: 90 |
| JIS B 2401-4D- P **       | SO-FA- P** | For Use with Heat<br>Resistant/Synthetic | Spring Hardness: 70 |
|                           | SO-FB-P*   | Oils Material: Fluororubber              | Spring Hardness: 90 |

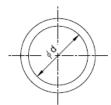
Note) 1. "-P\*" denotes dynamic O-rings; "-G\*" denotes static O-rings.
2. The basic sizes for -1A, -1B, and -4D are the same.

| JIS I           | 3 2401-1 <mark>A</mark> - | P*        |
|-----------------|---------------------------|-----------|
| Designation     | Actual S                  | Size (mm) |
| Designation     | d                         | w         |
| P 90<br>P 95    | 89.6<br>94.6              |           |
| P 100           | 99.6                      | 5.7       |
| P 102<br>P 105  | 101.6<br>104.6            |           |
| P 110<br>P 112  | 109.6<br>111.6            |           |
| P 115           | 114.6                     | 5.7       |
| P 120<br>P 125  | 119.6<br>124.6            |           |
| P 130<br>P 132  | 129.6<br>131.6            |           |
| P 135           | 134.6                     | 5.7       |
| P 140<br>P 145  | 139.6<br>144.6            |           |
| P 150           | 149.6                     | 5.7       |
| P 150A<br>P 155 | 149.5<br>154.5            |           |
| P 160           | 159.5                     | 8.4       |
| P 165<br>P 170  | 164.5<br>169.5            |           |
| P 175           | 174.5                     | 0.4       |
| P 180<br>P 185  | 179.5<br>184.5            | 8.4       |
| P 190           | 189.5                     |           |
| P 195<br>P 200  | 194.5<br>199.5            |           |
| P 205<br>P 209  | 204.5<br>208.5            | 8.4       |
| P 210           | 209.5                     |           |
| P 215<br>P 220  | 214.5<br>219.5            |           |
| P 225           | 224.5                     | 8.4       |
| P 230<br>P 235  | 229.5<br>234.5            |           |
| P 240<br>P 245  | 239.5<br>244.5            |           |
| P 250           | 249.5                     | 8.4       |
| P 255<br>P 260  | 254.5<br>259.5            |           |
| P 265<br>P 270  | 264.5<br>269.5            |           |
| P 275           | 209.5                     | 8.4       |
| P 280<br>P 285  | 279.5<br>284.5            |           |
| P 290           | 289.5                     |           |
| P 295<br>P 300  | 294.5<br>299.5            | 8.4       |
| P 315<br>P 320  | 314.5<br>319.5            |           |
| P 335           | 334.5                     |           |
| P 340<br>P 355  | 339.5<br>354.5            | 8.4       |
| P 360<br>P 375  | 359.5<br>374.5            |           |
| D 205           | 294.5                     |           |

| JIS B 2401-1 <sup>A</sup> -G*             |                                           |     |  |
|-------------------------------------------|-------------------------------------------|-----|--|
| Designation                               | Actual Size (mm)                          |     |  |
| Dooignation                               | d                                         | w   |  |
| G 25<br>G 30<br>G 35<br>G 40<br>G 45      | 24.4<br>29.4<br>34.4<br>39.4<br>44.4      | 3.1 |  |
| G 50<br>G 55<br>G 60<br>G 65<br>G 70      | 49.4<br>54.4<br>59.4<br>64.4<br>69.4      | 3.1 |  |
| G 75<br>G 80<br>G 85<br>G 90<br>G 95      | 74.4<br>79.4<br>84.4<br>89.4<br>94.4      | 3.1 |  |
| G 100<br>G 105<br>G 110<br>G 115<br>G 120 | 99.4<br>104.4<br>109.4<br>114.4<br>119.4  | 3.1 |  |
| G 125<br>G 130<br>G 135<br>G 140<br>G 145 | 124.4<br>129.4<br>134.4<br>139.4<br>144.4 | 3.1 |  |
| G 150<br>G 155<br>G 160<br>G 165<br>G 170 | 149.3<br>154.3<br>159.3<br>164.3<br>169.3 | 5.7 |  |
| G 175<br>G 180<br>G 185<br>G 190<br>G 195 | 174.3<br>179.3<br>184.3<br>189.3<br>194.3 | 5.7 |  |
| G 200<br>G 210<br>G 220<br>G 230<br>G 240 | 199.3<br>209.3<br>219.3<br>229.3<br>239.3 | 5.7 |  |
| G 250<br>G 260<br>G 270<br>G 280<br>G 290 | 249.3<br>259.3<br>269.3<br>279.3<br>289.3 | 5.7 |  |
| G 300                                     | 299.3                                     | 5.7 |  |

**Sheet** 

384.5 399.5


P 385 P 400

8.4



#### O-Ring Size [Part 2] AS 568 (Former ARP 568), **Aerospace Size Standard for O-Rings**

#### **Data Sheet**



Actual Size (mm)

0.74

1.07

1.42 1.78

2.57

2.90

3.68

4.47

6.07

 $7.65 \\ 9.25$ 

10.82

12.42

14.00

15.60

17.17

18.77 20.35

21.95

23.52

25.12

26.70

28.30

29.87

31.47

33.05

34.65

37.82

41.00

44.17

47.35 50.52

53.70

56.87

60.05

63.22

66.40

69.57

72.75

75.92

82.27

88.62 94.97

101.32

107.67

 $\begin{array}{c} 114.02 \\ 120.37 \end{array}$ 

126.72

133.07

4.42

5.23

6.02

7.59

9.19

10.77

12.37

13.94 15.54

17.12

1.02

1.27 1.52 1.78

1.78

1.78

1.78

1.78

1.78

1.78

1.78

1.78

1.78

2.62

2.62

nation

002

003 004

005

006

007

008

010

011

013

014 015

016

017

018

020

021

022

023

024

025

026

028

029

030

031

 $032 \\ 033$ 

034

035

036

037

038

039

040

041

042

 $043 \\ 044$ 

045

046

 $047 \\ 048$ 

050

106

107

108

109

110

111

112

113

114

115



Actual Size (mm)

2.62

2.62

2.62

2.62

2.62

2.62

2.62

2.62

2.62

2.62

2.62

2.62

18.72

20.29

21.89

23.47

25.07

26.64

28.24

29.82

31.42

32.99

34.59

36.17

37.77

39 34

40.94

42.52

44.12

45.69

48.89

50.47

52.07

53.64

56.82

58.42

59.99

61.59

63.17

64.77

66.34

67.94 69.52

71.12

72.62

75.87

82.22

88.57

94.92

101.27 107.62

113.97

120.32

126.67

133.02

139.37

145.72 152.07

158.42

164.77 171.12 177.47

183.82

190.17

196.52

202.87

209.22

215.57 221.92 228.27

AS 568

Desig-

nation

117

118 119

120

121

122

123

124

125

126

127

 $\frac{128}{129}$ 

130

132 133

134

135

136

137

138

139

140

141

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

 $\frac{162}{163}$ 

164

165

166

167

168

169

170

171

172

173 174

175

| AS 568                          | A street O | <u> </u>                                       | AS 568                          | A atual C | i=o (mm)                                       |
|---------------------------------|------------|------------------------------------------------|---------------------------------|-----------|------------------------------------------------|
| Desig-                          |            | ize (mm)                                       | Desig-                          |           | ize (mm)                                       |
| nation                          | W          | d                                              | nation                          | W         | d                                              |
| 176<br>177<br>178               | 2.62       | 234.62<br>240.97<br>247.32                     | 275<br>276<br>277<br>278<br>279 | 3.53      | 266.29<br>278.99<br>291.69<br>304.39<br>329.79 |
| 210<br>211<br>212<br>213<br>214 | 3.53       | 18.64<br>20.22<br>21.82<br>23.39<br>24.99      | 280<br>281<br>282<br>283<br>284 | 3.53      | 355.19<br>380.59<br>405.26<br>430.66<br>456.06 |
| 215<br>216<br>217<br>218<br>219 | 3.53       | 26.57<br>28.17<br>29.74<br>31.34<br>32.92      | 325<br>326<br>327<br>328<br>329 | 5.33      | 37.46<br>40.64<br>43.82<br>46.99<br>50.16      |
| 220<br>221<br>222<br>223<br>224 | 3.53       | 34.52<br>36.09<br>37.69<br>40.87<br>44.04      | 330<br>331<br>332<br>333<br>334 | 5.33      | 53.34<br>56.52<br>59.69<br>62.86<br>66.04      |
| 225<br>226<br>227<br>228<br>229 | 3.53       | 47.22<br>50.39<br>53.57<br>56.74<br>59.92      | 335<br>336<br>337<br>338<br>339 | 5.33      | 69.22<br>72.39<br>75.56<br>78.74<br>81.92      |
| 230<br>231<br>232<br>233<br>234 | 3.53       | 63.09<br>66.27<br>69.44<br>72.62<br>75.79      | 340<br>341<br>342<br>343<br>344 | 5.33      | 85.09<br>88.26<br>91.44<br>94.62<br>97.79      |
| 235<br>236<br>237<br>238<br>239 | 3.53       | 78.97<br>82.14<br>85.32<br>88.49<br>91.67      | 345<br>346<br>347<br>348<br>349 | 5.33      | 100.96<br>104.14<br>107.32<br>110.49<br>113.66 |
| 240<br>241<br>242<br>243<br>244 | 3.53       | 94.84<br>98.02<br>101.19<br>104.37<br>107.54   | 350<br>351<br>352<br>353<br>354 | 5.33      | 116.84<br>120.02<br>123.19<br>126.36<br>129.54 |
| 245<br>246<br>247<br>248<br>249 | 3.53       | 110.72<br>113.89<br>117.07<br>120.24<br>123.42 | 355<br>356<br>357<br>358<br>359 | 5.33      | 132.72<br>135.89<br>139.07<br>142.24<br>145.42 |
| 250<br>251<br>252<br>253<br>254 | 3.53       | 126.59<br>129.77<br>132.94<br>136.12<br>139.29 | 360<br>361<br>362<br>363<br>364 | 5.33      | 148.59<br>151.77<br>158.12<br>164.47<br>170.82 |
| 255<br>256<br>257<br>258<br>259 | 3.53       | 142.47<br>145.64<br>148.82<br>151.99<br>158.34 | 365<br>366<br>367<br>368<br>369 | 5.33      | 177.17<br>183.52<br>189.87<br>196.22<br>202.57 |
| 260<br>261<br>262<br>263<br>264 | 3.53       | 164.69<br>171.04<br>177.39<br>183.74<br>190.09 | 370<br>371<br>372<br>373<br>374 | 5.33      | 208.92<br>215.27<br>221.62<br>227.97<br>234.32 |
| 265<br>266<br>267<br>268<br>269 | 3.53       | 196.44<br>202.79<br>209.14<br>215.49<br>221.84 | 375<br>376<br>377<br>378<br>379 | 5.33      | 240.67<br>247.67<br>253.37<br>266.07<br>278.77 |
| 270<br>271<br>272<br>273<br>274 | 3.53       | 228.19<br>234.54<br>240.89<br>247.24<br>253.59 | 380<br>381<br>382<br>383<br>384 | 5.33      | 291.47<br>304.17<br>329.57<br>354.97<br>380.37 |

|   | AS 568                          | Actual S | ize (mm)                                       |
|---|---------------------------------|----------|------------------------------------------------|
|   | Desig-<br>nation                | w        | d                                              |
|   | 385<br>386<br>387               | 5.33     | 405.26<br>430.66<br>456.07                     |
|   | 388<br>389<br>390               |          | 481.41<br>506.81<br>532.21                     |
|   | 391<br>392<br>393<br>394        | 5.33     | 557.61<br>582.68<br>608.08<br>633.48           |
|   | 395                             | 5.33     | 658.88                                         |
|   | 425<br>426<br>427<br>428<br>429 | 6.98     | 113.66<br>116.84<br>120.02<br>123.19<br>126.36 |
|   | 430<br>431<br>432<br>433<br>434 | 6.98     | 129.54<br>132.72<br>135.89<br>139.06<br>142.24 |
| • | 435<br>436<br>437<br>438<br>439 | 6.98     | 145.42<br>148.59<br>151.76<br>158.12<br>164.46 |
|   | 440<br>441<br>442<br>443<br>444 | 6.98     | 170.82<br>177.16<br>183.52<br>189.86<br>196.22 |
|   | 445<br>446<br>447<br>448<br>449 | 6.98     | 202.56<br>215.27<br>227.96<br>240.67<br>253.36 |
|   | 450<br>451<br>452<br>453<br>454 | 6.98     | 266.07<br>278.76<br>291.47<br>304.16<br>316.87 |
|   | 455<br>456<br>457<br>458<br>459 | 6.98     | 329.56<br>342.27<br>354.96<br>367.67<br>380.36 |
| - | 460<br>461<br>462<br>463<br>464 | 6.98     | 393.07<br>405.26<br>417.96<br>430.66<br>443.36 |
|   | 465<br>466<br>467<br>468<br>469 | 6.98     | 456.06<br>468.76<br>481.46<br>494.16<br>506.86 |
|   | 470<br>471<br>472<br>473<br>474 | 6.98     | 532.26<br>557.66<br>582.68<br>608.08<br>633.48 |
|   | 475                             | 6.00     | CEO 00                                         |

6.98 658.88

475

**Sheet** 



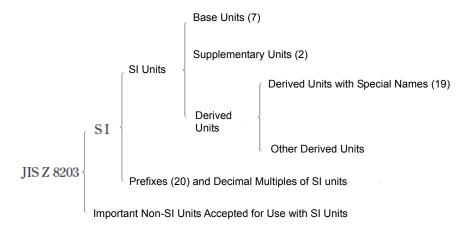
#### International System of Units (SI) [Part 1]

(According to JIS Z 8203 "SI units and recommendations for the use of their multiples and of certain other units" and Z 8202 "Quantities and units")

#### Origin of the term SI (International System of Units)

SI stands for Système International d'Unités in French (International System of Units in English), an internationally accepted official abbreviation.

#### Purpose and historical background of the SI


The Metre Convention was signed in 1875 to oversee the keeping of metric system as a unified international system of units. Then, the metric system had more than ten variations, losing its consistency. At the 9th General Conference on Weights and Measures (Conférence Générale des Poids et Mesures: CGPM) in 1948, a resolution was adopted "to use a unified system of units in all fields". The International Committee for Weights and Measures (Comité International des Poids et Mesures: CIPM) of the treaty organization started a process to establish a unified system and determined the framework of the SI in 1960. In 1973, the International Organization for Standardization (ISO) developed the standard ISO 1000, which describes SI units and recommendations for the use of them, leading to global adoption of the system. In Japan, a policy to introduce SI units into JIS through the following three phases was determined in 1972; the introduction of SI units into JIS progressed rapidly.

First phase: Use of conventional units followed by SI units e.g. 1 kgf [9.8 N] Second phase: Use of SI units followed by conventional units e.g. 10 N  $\{1.02 \text{ kgf}\}$  Third phase: Use of SI units only e.g. 10 N

The Measurement Act in Japan was fully revised in 1992 and enacted in 1993 to unify statutory measurement units into SI units. Under the new Measurement Act, a transition period of up to seven years was granted before the exclusive use of SI units for "pressure" and "moment of force" in the field of hydraulics, and the period expired on September 30, 1999. Since October 1, 1999, it has been mandatory to use SI units as statutory measurement units for transactions and certifications. Commercially available pressure gauges are in SI units. The units used in this catalogue are SI units.

All units used in this catalogue are SI units as applicable in the third phase of the SI implementation process.

#### Structure of SI units and JIS Z 8203



#### Base Units

| Quantity                     | Base Un  | it     |
|------------------------------|----------|--------|
| Quantity                     | Name     | Symbol |
| Length                       | meter    | m      |
| Mass                         | kilogram | kg     |
| Time                         | second   | s      |
| Electric Current             | ampere   | A      |
| Thermodynamic<br>Temperature | kelvin   | K      |
| Amount of Substance          | mole     | mol    |
| Luminous<br>Intensity        | candela  | cd     |

#### Supplementary Units

| Quantity    | Supplementary Unit |        |
|-------------|--------------------|--------|
|             | Name               | Symbol |
| Plane Angle | radian             | rad    |
| Solid Angle | steradian          | sr     |



### International System of Units (SI) [Part 2]

#### Prefixes

Prefixes are used to form decimal multiples of SI units.

| I loit M. Itialian | Prefix |        |  |
|--------------------|--------|--------|--|
| Unit Multiplier    | Name   | Symbol |  |
| $10^{24}$          | yotta  | Y      |  |
| $10^{21}$          | zetta  | Z      |  |
| $10^{18}$          | exa    | E      |  |
| $10^{15}$          | peta   | P      |  |
| $10^{12}$          | tera   | Т      |  |
| $10^{9}$           | giga   | G      |  |
| $10^{6}$           | mega   | M      |  |
| $10^{3}$           | kilo   | k      |  |
| $10^{2}$           | hecto  | h      |  |
| 10                 | deka   | da     |  |
| 10-1               | deci   | d      |  |
| 10-2               | centi  | с      |  |
| 10-3               | milli  | m      |  |
| $10^{-6}$          | micro  | μ      |  |
| 10-9               | nano   | n      |  |
| $10^{-12}$         | pico   | p      |  |
| 10-15              | femto  | f      |  |
| $10^{-18}$         | atto   | a      |  |
| $10^{-21}$         | zepto  | z      |  |
| 10-24              | yocto  | y      |  |

#### Non-SI units accepted for use with SI units

| Quantity       | Unit Name                  | Unit Symbol   |
|----------------|----------------------------|---------------|
| Time           | minute<br>hour<br>day      | min<br>h<br>d |
| Plane<br>Angle | degree<br>minute<br>second | o<br>,<br>,,  |
| Volume         | liter                      | 1, L*         |
| Mass           | metric ton                 | t             |

- ★The letter "L" may be used as the symbol for liter, when the symbol "l" for liter might be confused with any other character (as a general rule, Yuken uses "L").
- Units accepted for use with SI units for usefulness in special fields

| Quantity       | Unit Name         | Unit Symbol |
|----------------|-------------------|-------------|
| Energy         | electronvolt      | eV          |
| Atomic Mass    | atomic mass unit  | u           |
| Distance       | astronomical unit | AU          |
| 2.0.000        | parsec            | pc          |
| Fluid Pressure | bar               | bar         |

#### Derived units

Derived units are expressed algebraically in terms of base units and supplementary units (by means of the mathematical symbols of multiplication and division) in the International System of Units.

#### Derived units expressed in terms of SI base units

| Occaratita :                        | Derived Unit             |                    |
|-------------------------------------|--------------------------|--------------------|
| Quantity                            | Name                     | Symbol             |
| Area                                | square meter             | m²                 |
| Volume                              | cubic meter              | m <sup>3</sup>     |
| Speed, Velocity                     | meter per second         | m/s                |
| Acceleration                        | meter per second squared | m/s <sup>2</sup>   |
| Wavenumber                          | reciprocal meter         | m <sup>-1</sup>    |
| Density                             | kilogram per cubic meter | kg/m³              |
| Current Density                     | ampere per square meter  | A/m <sup>2</sup>   |
| Magnetic Field<br>Strength          | ampere per meter         | A/m                |
| (Amount-of-substance) Concentration | mole per cubic meter     | mol/m <sup>3</sup> |
| Specific Volume                     | cubic meter per kilogram | m³/kg              |
| Luminance                           | candela per square meter | cd/m <sup>2</sup>  |

#### Derived units with special names

| Overstitus                                                                   | Derived Unit          |        |                   |
|------------------------------------------------------------------------------|-----------------------|--------|-------------------|
| Quantity                                                                     | Name                  | Symbol | Definition        |
| Frequency                                                                    | hertz                 | Hz     | s <sup>-1</sup>   |
| Force                                                                        | newton                | N      | kg·m/s²           |
| Pressure, Stress                                                             | pascal                | Pa     | N/m²              |
| Energy, Work, Amount of Heat                                                 | joule                 | J      | N∙m               |
| Amount of Work Done Per<br>Time, Motive Power, Electrical<br>Power           | watt                  | W      | J/s               |
| Electric Charge, Amount of<br>Electricity                                    | coulomb               | С      | A·s               |
| Electric Potential, Potential<br>Difference, Voltage,<br>Electromotive Force | volt                  | V      | W/A               |
| Capacitance                                                                  | farad                 | F      | C/V               |
| Electric Resistance                                                          | ohm                   | Ω      | V/A               |
| (Electric) Conductance                                                       | siemens               | S      | A/V               |
| Magnetic Flux                                                                | weber                 | Wb     | V·s               |
| Magnetic Flux Density,<br>Magnetic Induction                                 | tesla                 | Т      | Wb/m <sup>2</sup> |
| Inductance                                                                   | henry                 | H      | Wb/A              |
| Celsius Temperature                                                          | degree celsius/degree | °C     |                   |
| Luminous Flux                                                                | lumen                 | lm     | cd·sy             |
| Illuminance                                                                  | lux                   | lx     | lm/m²             |
| Activity Referred to a Radionuclide                                          | becquerel             | Bq     | S <sup>-1</sup>   |
| Absorbed Dose                                                                | gray                  | Gy     | J/kg              |
| Dose Equivalent                                                              | sievert               | Sv     | Gy                |

# International System of Units (SI)

Sheet



#### **International System of Units (SI)** [Part 3]

#### ■ Use of SI units

#### Space and Time

| Space and 1                                                                                                | iiiie                                                |                                                                          |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|
| Quantity                                                                                                   | SI Unit                                              | Decimal<br>Multiple<br>Unit                                              |
| Plane Angle                                                                                                | rad<br>(radian)                                      | mrad $\mu$ rad                                                           |
| Solid Angle                                                                                                | sr<br>(steradian)                                    |                                                                          |
| Length, Width,<br>Height,<br>Thickness,<br>Radius,<br>Diameter,<br>Length of Path<br>Traveled,<br>Distance | m<br>(meter)                                         | km<br>dm<br>cm<br>mm<br>μ m<br>nm                                        |
| Area                                                                                                       | m <sup>2</sup><br>(square<br>meter)                  | km <sup>2</sup><br>dm <sup>2</sup><br>cm <sup>2</sup><br>mm <sup>2</sup> |
| Volume                                                                                                     | m <sup>3</sup> (cubic meter)                         | dm <sup>3</sup><br>cm <sup>3</sup><br>mm <sup>3</sup>                    |
| Time                                                                                                       | s (second)                                           | ks<br>ms<br>μs<br>ns                                                     |
| Angular<br>Velocity                                                                                        | rad/s<br>(radian per<br>second)                      |                                                                          |
| Speed, Velocity                                                                                            | m/s<br>(meter per<br>second)                         |                                                                          |
| Acceleration                                                                                               | m/s <sup>2</sup><br>(meter per<br>second<br>squared) |                                                                          |

#### Periodic and Related Phenomena

| Frequency                           | Hz (hertz)                      | THz<br>GHz<br>MHz<br>kHz |
|-------------------------------------|---------------------------------|--------------------------|
| Rotational<br>Speed,<br>Revolutions | s <sup>-1</sup><br>(per second) | ·                        |

#### Dynamics

| kg<br>(kilogram) | Mg               |
|------------------|------------------|
|                  | g                |
|                  | mg               |
|                  | $\mu g$          |
|                  | kg<br>(kilogram) |

| Dynamics                                             |                                                                        |                                 |
|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|
| Quantity                                             | SI Unit                                                                | Decimal<br>Multiple<br>Unit     |
| Density,<br>Concentration                            | kg/m³<br>(kilogram<br>per cubic<br>meter)                              | mg/m³ or<br>kg/dm³ or<br>g/cm³  |
| Moment of Inertia                                    | kg·m²<br>(kilogram<br>meter<br>squared)                                |                                 |
| Force                                                | N (newton)                                                             | MN<br>kN<br>mN<br>μN            |
| Moment of<br>Force                                   | N·m<br>(newton<br>meter)                                               | MN·m<br>kN·m<br>mN·m<br>μN·m    |
| Pressure                                             | Pa (pascal)                                                            | GPa<br>MPa<br>kPa<br>mPa<br>μPa |
| Stress                                               | (pascal or<br>newton per<br>square<br>meter)<br>Pa or N/m <sup>2</sup> | GPa,<br>MPa or<br>N/mm²,<br>kPa |
| Viscosity                                            | Pa·s<br>(pascal<br>second)                                             | mPa·s                           |
| Kinematic<br>Viscosity                               | m <sup>2</sup> /s<br>(square meter<br>per second)                      | mm²/s                           |
| Work, Energy,<br>Amount of<br>Heat                   | J (joule)                                                              | TJ<br>GJ<br>MJ<br>kJ<br>mJ      |
| Power, Amount<br>of Work Done<br>Per Unit of<br>Time | W (watt)                                                               | GW<br>MW<br>kW<br>mW<br>μW      |
| Flow Rate                                            | m³/s<br>(cubic meter<br>per second)                                    |                                 |

#### Heat

| Quantity                                        | SI Unit                             | Decimal<br>Multiple<br>Unit |
|-------------------------------------------------|-------------------------------------|-----------------------------|
| Thermodynamic<br>Temperature                    | K (kelvin)                          |                             |
| Celsius<br>Temperature                          | °C (degree<br>Celsius or<br>degree) |                             |
| Temperature Interval,<br>Temperature Difference | K or °C                             |                             |
| Amount of<br>Heat                               | J (joule)                           | TJ<br>GJ<br>MJ<br>kJ<br>mJ  |
| Heat Flow<br>Rate                               | W (watt)                            | kW                          |
| Thermal Conductivity                            | W/(m·K)                             |                             |
| Coefficient of Heat<br>Transfer                 | W/(m <sup>2</sup> ⋅K)               |                             |
| Specific Heat Capacity                          | J/(kg·K)                            | kJ/(kg·K)                   |

#### Electricity and Magnetism

| Electric<br>Current                                                                            | A (ampere)     | kA<br>mA<br>μA<br>nA<br>pA                                                                                                             |
|------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Electric Potential,<br>Electric Potential<br>Difference,<br>Voltage,<br>Electromotive<br>Force | V (volt)       | MV<br>kV<br>mV<br>μV                                                                                                                   |
| (Electric)<br>Resistance<br>(Direct<br>Current)                                                |                | $\begin{array}{c} G\Omega \\ M\Omega \\ (\text{Remarks})\text{M}\Omega \\ \text{is also referred} \\ \text{to as megohm.} \end{array}$ |
|                                                                                                | $\Omega$ (ohm) | kΩ<br>mΩ<br>μΩ                                                                                                                         |
| (Active)<br>Electric<br>Power                                                                  | W (watt)       | TW GW MW kW  mW                                                                                                                        |

#### Sound

| Frequency    | Hz (hertz) | GHz<br>MHz<br>kHz |
|--------------|------------|-------------------|
| Sound Pressu | re Level*  | •                 |

<sup>\*</sup>This SI unit is not provided by ISO 1000-1973 and ISO 31 Part 7-1978, but JIS adopts and specifies dB (decibel) as a unit accepted for use with SI units.



### International System of Units (SI) [Part 4]

#### ■ SI unit conversion factors table

(Shaded columns represent SI units.)

#### Force

| N<br>Newton      | dyn                     | kgf                      |
|------------------|-------------------------|--------------------------|
| 1                | 1×10 <sup>5</sup>       | $1.01972 \times 10^{-1}$ |
| $1\times10^{-5}$ | 1                       | $1.01972 \times 10^{-6}$ |
| 9.806 65         | $9.80665 \times 10^{5}$ | 1                        |

#### Moment of inertia

| N·m<br>Newton meter | kgf∙m     |
|---------------------|-----------|
| 1                   | 0.101 972 |
| 9.807               | 1         |

Note) 1 N·m = 1 kg•m²/s²

#### Pressure

| Pa<br>pascal            | bar                      | kgf/cm <sup>2</sup>      | atm                     | mmH <sub>2</sub> O       | mmHg or Torr              |
|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|---------------------------|
| 1                       | 1×10 <sup>-5</sup>       | $1.01972 \times 10^{-5}$ | $9.86923{	imes}10^{-6}$ | $1.01972 \times 10^{-1}$ | $7.500 62 \times 10^{-3}$ |
| $1\times10^{5}$         | 1                        | 1.019 72                 | $9.86923{	imes}10^{-1}$ | $1.01972 \times 10^4$    | $7.50062 \times 10^{2}$   |
| $9.80665 \times 10^4$   | $9.80665 \times 10^{-1}$ | 1                        | $9.67841{	imes}10^{-1}$ | $1 \times 10^{4}$        | $7.35559\times10^{2}$     |
| $1.013\ 25\times10^{5}$ | 1.013 25                 | 1.033 23                 | 1                       | $1.03323\times10^{4}$    | $7.600\ 00\times10^{2}$   |
| 9.806 65                | $9.80665 \times 10^{-5}$ | 1×10 <sup>-4</sup>       | $9.67841{	imes}10^{-5}$ | 1                        | $7.35559\times10^{-2}$    |
| $1.333\ 22\times10^{2}$ | $1.333\ 22\times10^{-3}$ | $1.35951\times10^{-3}$   | $1.31579\times10^{-3}$  | $1.35951 \times 10$      | 1                         |

Note) 1 Pa = 1 N/m2

#### Stress

| Pa<br>pascal            | MPa or N/mm <sup>2</sup> Megapascal or newton per square milimeter | kgf/mm <sup>2</sup>      | kgf/cm <sup>2</sup>    |
|-------------------------|--------------------------------------------------------------------|--------------------------|------------------------|
| 1                       | 1×10 <sup>-6</sup>                                                 | $1.01972 \times 10^{-7}$ | $1.01972\times10^{-5}$ |
| $1 \times 10^{6}$       | 1                                                                  | $1.01972\times10^{-1}$   | $1.01972 \times 10$    |
| $9.80665 \times 10^{6}$ | 9.806 65                                                           | 1                        | $1 \times 10^{2}$      |
| $9.80665 \times 10^4$   | $9.80665 \times 10^{-2}$                                           | $1\times10^{-2}$         | 1                      |

#### Viscosity

| Pa•s<br>pascal second | cР                | P                  |
|-----------------------|-------------------|--------------------|
| 1                     | $1 \times 10^{3}$ | 1×10               |
| $1 \times 10^{-3}$    | 1                 | $1 \times 10^{-2}$ |
| $1 \times 10^{-1}$    | $1\times10^2$     | 1                  |

Note) 1 P = 1 dyn•s/cm² = 1 g/cm•s 1 Pa•s = 1 N•s/m² 1 cP = 1 mPa•s

#### Work, energy, amount of heat

| J<br>joule            | kW∙h                     | kgf∙m                  | kcal                     |
|-----------------------|--------------------------|------------------------|--------------------------|
| 1                     | $2.77778 \times 10^{-7}$ | $1.01972\times10^{-1}$ | $2.38889 \times 10^{-4}$ |
| $3.600 \times 10^{6}$ | 1                        | $3.67098\times10^{5}$  | $8.6000 \times 10^{2}$   |
| 9.806 65              | $2.724\ 07\times10^{-6}$ | 1                      | $2.34270\times10^{-3}$   |
| $4.18605\times10^{3}$ | $1.16279\times10^{-3}$   | $4.26858\times10^{2}$  | 1                        |

Note) 1 J = 1 W•s, 1 W•h = 3,600 W•s 1 cal = 4.186 05 J (according to the Measurement Act)

#### Kinematic viscosity

| m <sup>2</sup> /s<br>square meter per<br>second | cSt               | St                 |
|-------------------------------------------------|-------------------|--------------------|
| 1                                               | $1 \times 10^{6}$ | $1 \times 10^{4}$  |
| $1 \times 10^{-6}$                              | 1                 | $1 \times 10^{-2}$ |
| $1 \times 10^{-4}$                              | $1\times10^{2}$   | 1                  |

Note) 1 cSt = 1 mm<sup>2</sup>/s, 1 St = 1 cm<sup>2</sup>/s

#### Power (amount of work done per unit of time or motive power)

|   | kW<br>kilowatt           | kgf·m/s                 | PS                        | kcal/h                   |
|---|--------------------------|-------------------------|---------------------------|--------------------------|
| Ī | 1                        | $1.01972 \times 10^{2}$ | 1.359 62                  | 8.600 0 ×10 <sup>2</sup> |
|   | $9.80665 \times 10^{-3}$ | 1                       | $1.333333 \times 10^{-2}$ | 8.433 71                 |
|   | $7.355 \times 10^{-1}$   | 7.5 ×10                 | 1                         | $6.32529\times10^2$      |
|   | $1.16279\times10^{-3}$   | $1.18572{	imes}10^{-1}$ | $1.580\ 95{	imes}10^{-3}$ | 1                        |

Note) 1 W = 1 J/s, PS: French horsepower 1 PS = 0.735 5 kW (according to the Act for Enforcement of the Measurement Act) 1 cal = 4.186 05 J (according to the Measurement Act)

#### Specific heat capacity

| remperature                          |             |
|--------------------------------------|-------------|
| $T_1=T_2+273.15$                     |             |
| $T_3=1.8 T_2+32$                     |             |
| · · · · ·                            |             |
| T₁: Thermodynamic                    | K (kelvin)  |
| temperature                          | °C (dagraa) |
| T <sub>2</sub> : Celsius temperature | °C (degree) |
| <b>⊤</b> . ∘⊏                        |             |

| J/(kg•K)<br>joule per kilogram<br>kelvin                 | kcal/(kg·°C)<br>cal/( g·°C) |
|----------------------------------------------------------|-----------------------------|
| $\begin{array}{c} 1\\ 4.186\ 05 \times 10^3 \end{array}$ | $2.38889 \times 10^{-4}$    |

Note) 1 cal = 4.186 05 J (according to the Measurement A

#### Thermal conductivity

| W/(m•K)<br>watt per meter kelvin | kcal/(h·m·°C)            |
|----------------------------------|--------------------------|
| 1                                | 8.600 0×10 <sup>-1</sup> |
| 1.162 79                         | 1                        |

Note) 1 cal = 4.186 05 J (according to the Measurement Act)

#### Coefficient of heat transfer

| W/(m <sup>2</sup> •K)<br>watt per meter<br>squared kelvin | kcal/(h⋅m²⋅°C)           |
|-----------------------------------------------------------|--------------------------|
| 1<br>1.162 79                                             | 8.600 0×10 <sup>-1</sup> |

Note) 1 cal = 4.186 05 J (according to the Measurement Act)

868